Journals
  Publication Years
  Keywords
Search within results Open Search
Please wait a minute...
For Selected: Toggle Thumbnails
Pulmonary nodule detection based on feature pyramid networks
GAO Zhiyong, HUANG Jinzhen, DU Chenggang
Journal of Computer Applications    2020, 40 (9): 2571-2576.   DOI: 10.11772/j.issn.1001-9081.2019122122
Abstract468)      PDF (988KB)(539)       Save
Pulmonary nodules in Computerized Tomography (CT) images have large size variation as well as small and irregular size which leads to low detection sensitivity. In order to solve this problem, a method based on Feature Pyramid Network (FPN) was proposed. First, FPN was used to extract multi-scale features of nodules and strengthen the features of small objects and object boundary details. Second, a semantic segmentation network (named Mask FPN) was designed based on the FPN to segment and extract the pulmonary parenchyma quickly and accurately, and the pulmonary parenchyma area could be used as location map of object proposals. At the same time, a deconvolution layer was added on the top layer of FPN and a multi-scale prediction strategy was used to optimize the Faster Region Convolution Neural Network (R-CNN) in order to improve the performance of pulmonary nodule detection. Finally, to solve the problem of imbalance of positive and negative samples in the pulmonary nodule dataset, Focal Loss function was used in the Region Proposed Network (RPN) module in order to increase the detection rate of nodules. The proposed algorithm was tested on the public dataset LUNA16. Experimental results show that the improved network with FPN and deconvolution layer is helpful to the detection of pulmonary nodules, and focal loss function is also helpful to the detection. Combining with multiple improvements, when the average number of candidate nodules per scan was 46.7, the sensitivity of the presented method was 95.7%, which indicates that the method is more sensitive than the other convolutional networks such as Faster Region-Convolutional Neural Network (Faster R-CNN) and UNet. The proposed method can extract nodule features of different scales effectively and improve the detection sensitivity of pulmonary nodules in CT images. Meantime, the method can also detect small nodules effectively, which is beneficial to the diagnosis and treatment of lung cancer.
Reference | Related Articles | Metrics